herbarium_database
Université de Lomé
Description
Herbarium specimens and their data are, for the most part, verifiable, repeatable, sustainable, and persistent information on plant diversity and biology (Page et al., 2015; Holmes et al., 2016). Digitalization of herbarium data, ouis publication and integration is brining a new era of discovery, synthesis, and prediction (James et al., 2018). For many major international herbaria (e.g., Kew, Paris, Missouri, etc.), the digitization of botanical collections has become a priority for valuing and making available information on plant biodiversity. Databasing and publishing herbarium label information is becoming and essetial resource for systematic research, biogeography, ethnobiology and ecology. In particular, it is established that at least half of the new species described worldwide are from collections already available in Herbaria (Bebber et al., 2010). These botanical collections are also an indispensable tool in the field of biodiversity conservation. Indeed, they constitute the basic data for the evaluation of species conservation status, a task that presents a significant lack in Africa. Indeed, 90% of the species have the status "not evaluated" in Central Africa. (Billand, 2010). In addition, this digitization should be the source of national or regional checklists production, monographs and flora, as well as for the development of digital tools for plant identification.In West as Central Africa, the degree of digitization of floristic collections by Herbaria are still very disparate or available in various formats, so they are difficult to exploit. In order to avoid errors that could skew the analyzes, the information that is recorded in these digital platforms must be standardized, validated and updated. It is also essential to ensure the interoperability of these databases so that they can have a broader scope (Onana & Chevillotte, 2015).Data capture of the University of Lomé herbarium collections started in 2003 as part of the RIHA (West and Central Africa Herbarium Computer Network) initiative led by the IRD (Research Institut for development) team at the MNHN Paris. In 2008, this work underwent considerable growth with the Sud Expert Plantes project http://www.sud-expert-plantes.ird.fr/), which enabled more than 12,500 specimens to be captured in the "Letouzey" database. Also in 2008, as part of the "African Plants Initiative" (API) project, began the computerization and image capture of specimens. This global initiative has brought together in a digital library 250,000 images of some 60,000 plant species on the African continent including 8,000 specimens from the Herbarium of Togo.Officially constituted with samples assembled according to international standards, the only one of its kind in the whole country, the herbarium of the University of Lome, hosted in the Department of Botany of the Faculty of Sciences, acts as national herbarium. Creation of this national herbarium coincides with that of the University of Benin resulting from the collapse in 1970 of a higher institute called Institut Supérieur du Bénin (ISB) common in Togo and Dahomey (current Republic of Benin). In fact, the lectures of this institute, common to both countries since 1965, had been divided between Dahomey (scientific programs) and Togo (literary, legal and economic programs).On the continent, the tools for managing these herbarium data vary: Togo, Senegal and Guinea Conakry have the same conceptual model, developed through RIHA project (Chevillotte & Florence, 2006). The same applies to herbaria in Cameroon and Congo, while collections in Benin, Ghana and Burkina Faso are managed in partnership with the National Herbarium of the Netherlands (WAG), which uses the BRAHMS software. DRC, Rwanda and Burundi should also be managed with the latter software and in collaboration with the National Botanical Garden of Belgium (BR). Other sources of data (inventories, surveys) are available through SEP project http://phyto-afri.ird.fr).Primary biodiversity data have a pleiad of applications, providing an information base that is crucial to addressing challenges of knowledge, pedagogy, sustainable development and decision-making about natural resources and environments (Chapman, 2005; Sousa-Baena et al., 2013). Digital Accessible Knowledge (DAK) regarding biodiversity comprises primary data records that are in digital format, accessible globally without cost, and integrated with the broader university of such data (Sousa-Baena et al., 2013). Some exciting examples of uses of DAK exist, including for prioritizing areas for conservation, assessing geographic potential for species invasions, and understanding ecological and evolutionary processes (Mora et al., 2008; Nakamura & Soberón, 2008).In Togo, significant efforts have been made in digitization of and providing access to primary biodiversity data on the plants from herbarium sheets. The National Strategy and Action Plan for the Biodiversity of Togo (SPANB, 2014) indicated that the latest national CBD report in 2009 estimated the spontaneous plant diversity of Togo at 3,428 terrestrial species and 261 aquatic species (MERF, 2009) without taking into account the 621 species of the introduced flora (Radji et al., 2010). So, the number of species of Togolese flora should be revised upwards thanks to the many other works carried out in recent years. As such, can be mentionned: the works carried out in the ecological zone IV (zone of the humid forests of Togo) and surveys of Pteridophytes and algae, which respectively allowed the harvest of 72 new species of Angiosperms (Adjossou, 2009), 17 species of Pteridaceae (Pteridophyta) (Abotsi, 2013) and 240 species of microalgae (SPANB, 2014) newly described. This research improves knowledge on plant diversity, bringing the current flora of Togo to 4002 species, including 3501 terrestrial spontaneous species and 501 aquatic species. The state of the specific diversity of the spontaneous Togolese flora is not exhaustive, due to the lack of in-depth studies on the lower taxonomic groups, which for the most part are of great importance in maintening and developping ecosystems.
Type of content
Includes: point occurrence data, gbif import.
Citation
Radji R, Akpene K (2018). herbarium_database. Version 1.5. Université de Lomé. Occurrence dataset https://doi.org/10.15468/gm1qxi accessed via GBIF.org on 2020-03-18.
Digitised records
Looking up... the number of records that can be accessed through the GBIF France. This resource was last checked for updated data on 18 Mar 2020. The most recent data was published on 23 May 2018.
Click to view records for the herbarium_database resource.Metadata last updated on 2022-08-06 07:18:12.0